Механизмы развития резистентности к антибиотикам у бактерий

Автор: | 06.05.2019
Spread the love

Повсеместность распространения обоих явлений — способность отдельных микроорганизмов синтезировать антибиотики, других — обладать резистентностью к ним, обусловлена тем, что антибиотики в концентрациях, встречающихся в природных экосистемах, играют роль внутриклеточных сигнальных молекул, регулирующих транскрипцию генов. Изменение реакции бактериального коммуникативного сообщества на определенный сигнал, вызванное приобретением, или, наоборот, утратой антибиотикорезистентности, приводит к образованию новых экотопов. Поэтому проблема антибиотикорезистентности среди клинически значимых микроорганизмов уходит своими корнями в сложные экологические и эволюционные отношения между самими микроорганизмами, сложившиеся задолго до появления человека как биологического вида. В основе механизма распространения генов антибиотикорезистентности между бактериями лежит обмен плазмидами и конъюгативными транспозонами. В эволюции антибиотикорезистентности плазмиды и конъюгативные транспозоны выполняют функцию генетических платформ, на которых посредством рекомбинационных систем бактерий происходит сборка и сортировка генов антибиотикорезистентности, включенных в транспозоны, интегроны, генные кассеты и инсерционные криптические последовательности. К настоящему времени известно не менее четырех биохимических механизмов, отвечающих за развития у бактерий антибиотикорезистентности: детоксикация антибиотика; уменьшение проницаемости стенки микроорганизма для антибиотиков и/или выкачивание его из клетки; структурные изменения в молекулах, являющихся мишенями для антибиотиков; продукция альтернативных мишеней для антибиотиков. Высокие уровни антибиотикорезистентности у грамотрицательных бактерий обусловлены их способностью детоксицировать антибиотики в периплазматическом пространстве. В клеточной стенке грамположительных бактерий периплазматическое пространство отсутствует, поэтому механизмы их детоксикационной резистентности к антибиотикам менее эффективны, чем у грамотрицательных бактерий. Целесообразно расширить круг исследуемых проблем, связанных с распространением антибиотикорезистентных патогенных микроорганизмов в клинике, включив в него процессы накопления и обмена генов антибиотикорезистентности среди бактерий в природных экосистемах.

Широкое применение антибиотиков в медицине и сельском хозяйстве сопровождается распространением антибиотикорезистентных патогенных микроорганизмов в клинике. За последнее десятилетие при помощи методов молекулярного анализа получены данные, значительно расширившие представления о механизмах появления и распространения генов антибиотикорезистентности среди микроорганизмов, имеющих клиническое значение. Целью настоящей работы является рассмотрение механизмов развития резистентности к антибиотикам у бактерий. Особое внимание уделяется определению роли в этом процессе мобильных генетических элементов, а также биохимическим различиям антибиотикорезистентности у грамположительных и грамотрицательных микроорганизмов.

Антибиотики как сигнальные молекулы. Бактерии в естественных условиях образуют коммуникативные сообщества, включающие представителей разных таксонов, в которых и между которыми обмен информацией осуществляется посредством так называемых диффундирующих сигнальных молекул (diffusible signal molecules). Это низкомолекулярные вещества, взаимодействующие с системой клеточных рецепторных структур (мишеней). К их числу относятся и антибиотики (анти- + греч. bios жизнь) — органические молекулы с молекулярной массой в пределах 3 тыс. Да, получившие такое название из-за их бактерицидного или бактериостатического действия в концентрациях, обычно не встречающихся в природных экосистемах. Бактерии используют диффундирующие сигнальные молекулы для: 1) мониторинга своей популяционной плотности (the process of quorum sensing); 2) защиты своей экологической ниши; 3) координации своего поведения в отношении каких-то изменившихся условий внешней среды; 4) «наблюдения» за другими коммуникативными сообществами [18]. Биосинтетические пути антибиотиков сформировались у микроорганизмов еще до образования многоклеточной жизни. Например, у актиномицетов биосинтетические пути эритромицина и стрептомицина существуют не менее чем 500 млн лет [5].

Количество клеточных мишеней для диффундирующих сигнальных молекул, огромно. Ими являются не только рецепторные белки на поверхности бактерий, но и макромолекулярные структуры цитоплазмы. Первичный механизм, контролирующий функции бактериальной клетки, — регуляция транскрипции отдельных генов. Например, любой из 50 рибосомальных белков или РНК, может быть специфическим рецептором, связывающим такие молекулы, как аминогликозиды и макролидные антибиотики. Экспериментально установлено, что субингибирующие концентрации антибиотиков либо увеличивают, либо, наоборот, уменьшают количество транскриптов в различных бактериальных клетках.

Мобильные генетические элементы участвовали в переносе генов резистентности к антибиотикам между бактериями еще до внедрения антибиотиков в клиническую практику. Описан штамм кишечной палочки, выделенный до 1937 г., содержащий плазмиду (R-фактор), определяющую устойчивость к тетрациклину и стрептомицину .

Транспозоны (Tn) — мобильные генетические элементы, несущие структурные гены, детерминирующие функции, не связанные с самим процессом перемещения между бактериями. Отдельные транспозоны включают гены антибиотикорезистентности, различающиеся между собой по структуре, происхождению и механизмам транспозиции. Механизмы перемещения транспозонов по геному бактерии не требуют гомологии между их ДНК и ДНК хромосомы бактерии в участках интеграции, хотя для некоторых транспозонов обнаружены предпочтения по интеграции среди таких участков. Известны транспозоны двух типов: 1) представляющие собой модульные системы. Их называют композитными транспозонами(composite transposons). Они включают пару IS-элементов и между ними — неспособную к транспозиции последовательность ДНК, содержащую структурный ген, изменяющий фенотип бактерии (рис. 1); 2) представляющие собой комплексные системы, в которых транспозиционная и нетранспозиционная функция не отражена четким модульным расположением нуклеотидных последовательностей. Транспозоны этой группы (complex transposons) более древние, чем композитные. Они имеют следы множественных рекомбинационных актов, включая вставки и делеции. Последние приходятся на участки, не имеющие отношения к транспозиции, что делает такие транспозоны компактными и увеличивает частоту их транспозиции